
INTELLIGENT CONTROLS FOR THE ELECTRON STORAGE RING

DELTA

D. Schirmer∗

Center for Synchrotron Radiation (DELTA), TU Dortmund University, Germany

Abstract

In recent years, artificial intelligence (AI) has become

one of the keywords in the field of controlling, monitoring

and optimizing complex particle accelerators. In accelerator

controls, one has to deal with a variety of time–dependent

parameters, nonlinear dynamics as well as a lot of small,

compounding errors. In order to cope with these tasks and

to achieve higher performance, particle accelerators require

new advanced strategies in controls and feedback systems.

Machine learning through (deep) neural networks, genetic

algorithms, swarm intelligence and adaptive controls are

some of the proposed approaches. Increased computational

capability and the availability of large data sets in combina-

tion with a better theoretical understanding of new network

architectures and training paradigms allow for promising

approaches for novel developments. This report aims at il-

lustrating first ideas for possible applications of intelligent

controls at the synchrotron radiation source DELTA.

INTRODUCTION

The application of artificial intelligence (AI) methods

for accelerator control was already discussed in the late

1980s [1]. At DELTA, a 1.5-GeV synchrotron light source

operated by the TU Dortmund University, early ideas of a

so–called "cybernetic machine" in the accelerator domain

were proposed 1996 in [2]. An example of using genetic

algorithms in designing and optimization of transfer line

optics are described in [3, 4]. In 2003, a knowledge–based

multi–agent expert system was experimentally implemented

for automatic control of the transfer line injection efficiency

(from booster to storage ring) at DELTA [5]. In 2005, de-

sign and comparison of assistive systems based on combi-

nations of evolutionary strategies and neural networks were

tested [4, 6]. Unfortunately, all systems did not show signifi-

cant improvements in practical accelerator operation.

In the light of recent theoretical and practical advances

in the field of machine learning and the use of deep neural

network–based modeling and controlling techniques, new

approaches for the control and monitoring of particle acceler-

ators are emerging. Furthermore, the availability of powerful

deep learning programming frameworks like TensorFlow [7],

Caffe [8], PyTorch [9], Keras [10] and Matlab [11] allow

rapid and optimized implementations of complex algorithms

and network architectures. A comprehensive overview of

the status quo in these fields is given in [12].
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CASE STUDIES OF AI AT DELTA

At DELTA, various possible applications of AI–based

controls are currently investigated:

Neuronal Network Techniques for Orbit Control

Orbit monitoring and correction is an important task in

accelerator controls. At DELTA, SVD–based (singular–

value decomposition) orbit correction programs have been

successfully used in routine machine operation for many

years [13–15] Currently, a new "Cone-Program"–based ap-

proach to orbit correction is being evaluated [16]. An-

other concept applies artificial neural network (ANN) tech-

niques [17, 18]. First prototype studies were carried out

with the Matlab programming workbench and correspond-

ing toolboxes [11].

Orbit Drift Compensation: Due to current losses in

the superconducting coils, the magnetic field of the super-

conducting asymmetric wiggler (SAW) decrease over time

(≈ 0.5 mT/h) which results in a significant horizontal or-

bit drift. This drift must be compensated to avoid electron

beam losses. A standard SVD–based orbit correction pro-

gram takes care of this, mainly by adapting the strength

of the most effective horizontal corrector magnet ("hk23")

which is mounted close to the SAW. Fig. 1 (top and center)

shows the time–dependent evolution of the magnetic field

strengths (hall probe sensor a, b), in correlation with the

steerer strength over one synchrotron user week (four days:

from Monday 12:00 h to Friday 12:00 h). The daily dips in

the curves result from refreshing the magnetic field of the

SAW. All data were extracted from the epicslog database

archiver [19] and were averaged over one hour which results

in 96 data pairs.

As neural networks are well suited for function fit prob-

lems, these data were used to train, by supervised learn-

ing, a fully connected feedforward neural network (FFNN

with 2 input, 4 hidden and 1 output neuron). Two differ-

ent kinds of neural nets were investigated on a trial basis:

FFNN1, with pure linear transfer functions and backpropa-

gation teaching using the Bayesian Regulation (br) method

(green squares) and FFNN2, with tangent–sigmoid transfer

functions and backpropagation training using the Levenberg–

Marquardt (lm) method (blue squares) [11]. Both nets were

trained with randomly selected data sets. To determine the

supervised training performance, the average squared differ-

ence between net outputs and targets (means squared error

(mse)) were calculated. After supervised training of 96 input–

output–target data combinations, the neural nets are able to

estimate an adequate corrector strength for given magnetic
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field strengths, although the nets consist only of seven neu-

rons. FFNN2 generally achieved slightly better results (see

Fig. 1, center and bottom). The error is reduced during the

week from ± 500 mA (<10%) to less than ± 300 mA (<6%).

Even though these are only preliminary results, the accuracy

should be sufficient to avoid electron beam losses. Further

improvements will be achieved by additional training (more

user weeks) and/or with more input–output data correlations

(e.g., additional hall probe sensors).

Figure 1: Neural network calculations for orbit drift com-

pensation.

Global (horizontal) Orbit Correction: At first, the

neural network topology for the global orbit correction was

defined as a classical fully connected three–layer feedfor-

ward neural network (FFNN) with 54 input neurons (input

layer corresponds to 54 beam position monitors (BPMs)),

54 hidden neurons (hidden layer) and 30 output neurons

(output layer corresponds to 30 horizontal steerer magnets).

This net was trained with two response matrices (BPM read-

ings for positive and negative single steerer kicks) and 1000

random orbits, generated by randomly distributed steerer

kicks (BPM data and corresponding steerer strengths). All

training data were generated by a simulated offline model

(DELTA lattice version "del008") of the DELTA storage

ring using the Accelerator Toolbox [20, 21] integrated in

the Matlab framework [11]. The simulated response matri-

ces, the working points and linear optics were crosschecked

with real machine data and showed good agreement at a per-

centage level.The training performance of neural networks

depends largely on the availability of large amounts of well–

preprocessed training data. Thus, the storage ring offline

model is ideally suited as a fast and accurate data source for

large sets of training samples.

The result of the FFNN performance function (mse) is

shown in Fig. 2. The training data are randomly divided

into three kinds of samples [11]: Exclusive training sam-

ples (80%) which are presented to the network, whereby

the network is adjusted according to its error (blue line),

validation samples (10%) which measure network gener-

alization and halt training when generalization stops im-

proving (green line) and testing samples (10%, no effect

on training) which provide an independent measure of net-

work performance during training (red line). During training

(increasing sample count) the performance improves con-

tinuously. After 1000 training samples the mse-value was

less than 2 × 10−4. Different transfer functions (pure lin-

ear, logarithmic–sigmoid, tangent–sigmoid) and teaching

methods (backpropagation with Levenberg–Marquardt (lm)

and Bayesian Regulation (br)) were evaluated. Best results

were achieved with the lm–training and the tangent–sigmoid

transfer function. As an example, the difference between

FFNN–proposed and model–calculated response (steerer

strengths for an arbitrary orbit) is shown in Fig.3. The rela-

tive mismatch for all steerer magnets is less than 10−6. Even

if these simulations give only preliminary estimates, this

rather simple approach is showing promising results. How-

ever, further investigations must prove its usability in real

storage ring operation. First tests are currently being evalu-

ated.

Figure 2: Neural network training performance (mse) for

global orbit correction.

PID–Based and Adaptive Neuro–Fuzzy Controls
In some areas of the DELTA control system, conventional

PID controllers are implemented. For example, the cavity

power control of the DELTA RF–system as well as the wa-

ter temperature control of the injection coolers (buncher,

linac structures) and the booster/storage ring cavities are

controlled in this manner. A water cooling system for the

new EU–type cavity was developed in–house and is currently
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Figure 3: Comparison of neural network and SVD–based

offline model calculations.

commissioned. Sensor and actuator data exchange is pro-

vided by a WAGO–I/O–system [19], whereby the high–level

control is also performed by a traditional EPICS record–

based PID algorithm [22]. In most cases, conventional con-

trollers such as the PID algorithms fulfill the requirements.

Although they have the advantage of being conceptually very

simple, robust and fast, they have several important limita-

tions as the number of parameters to control increases. Here,

adaptive controls could offer alternative approaches. For ex-

ample, neuro–adaptive–fuzzy controllers have the advantage

of being able to dynamically adapt to non–linearly changed

boundary conditions (e.g., long–term changes in ambient

air temperature or variations of water temperature supplied

by the cooling tower system, etc.). In contrast to that, PID

parameters require frequent manual recalibrations. Fuzzy

logic systems could also be identified as a good initial can-

didate for the application of neural network-based control

methods.

To study this, the water cooling system for the EU–type

cavity was schematically modeled in the Matlab/Simulink

software framework [11]. The schematics of the control

loop is shown in Fig. 4. The goal is to keep the water outlet

temperature constant at a level of 33 degrees within ±0.5

degrees. The water is heated by the cavity body depend-

ing on the supplied RF power (max. 75 kW). A PT1000

sensor measures the water temperature directly after the cav-

ity water outlet. A valve regulates the cold water supply

provided by a heat exchanger [22]. Conventional PID con-

trollers follow an arbitrary step function heating curve with

typical control over– and undershoots (see Fig. 5, red curve).

The response behaviour can significantly be improved by

a fuzzy logic controller (see Fig. 5, blue curve). Here, a

set of five fuzzy rules (for the water temperature and valve

position, respectively) with Gaussian membership functions

were implemented as a first simulation test.

As soon as measured data are available, the controller

will be extended by an adaptive neuro–fuzzy learning sys-

Figure 4: Water temperature control loop for the EU–type

cavity.

tem. This system provides a method for the fuzzy modeling

procedure to learn information about data sets in order to

compute the membership function parameters that best al-

low the associated fuzzy interference system to track the

measured input/output data. This learning method works

very similar to that of neural networks [11].

Figure 5: Comparison of PID and fuzzy control simulations.

SUMMARY AND OUTLOOK

Machine learning offers new, powerful and flexible solu-

tions in many areas of accelerator controls. At DELTA, var-

ious applications are in the evaluation phase with promising

intermediate results. The usability in real machine operation

is currently being tested.

Computing performance is often a significant issue when

training a machine learning model, especially for multilay-

ered (deep) neural networks with millions of neurons. There-

fore, high–performing hardware components such as special

graphics or tensor processor units with optimized software

features (e.g., parallel and distributed processing) will be

necessary in the future. This could open up further demand-

ing application possibilities [23].
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