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Abstract
The 1.5 GeV electron storage ring DELTA, operated by

the University of Dortmund in Germany, celebrated its 30th
anniversary last fall. Over the past three decades, the con-
trol system has undergone many different IT infrastructure
development cycles. It was commissioned between 1994
and 1998, utilizing a series of command-line-based in-house
applications that operated on individual, low-performance
networked HP workstations and VME-based real-time CPUs,
initially without the support of graphical user interfaces
(GUIs). These GUIs were gradually implemented later with
the introduction of the EPICS software package (1999-2001).
Based on a combination of EPICS and a newly installed
Linux PC-based client/server architecture, a variety of soft-
ware tools and hardware extensions were introduced in the
following years. Today, the DELTA control system utilizes
an open-source virtual environment with a server manage-
ment platform that integrates kernel-based virtual machines
(KVM), software-defined storage and network functions on
a single platform. In addition, web-based user interfaces
simplify the configuration of the integrated disaster recovery
tool and enhance the management of high availability and
redundancy within the server cluster. Furthermore, machine
learning algorithms have been incorporated into the control
and optimization of the storage ring. This report gives a his-
torical review, summarizes the most important developments
in recent years and provides an outlook on future projects.

INTRODUCTION
The DELTA synchrotron light source, which is operated

by the TU Dortmund University in Germany, consists of
a linear pre-accelerator (70 MeV), a full energy booster
synchrotron (70 MeV to 1.5 GeV) and a storage ring with
115.2 m circumference (see Fig. 1). The maximum stored
beam current amounts to 140 mA (nominal multibunch op-
eration) with a lifetime of about 60 hours (at 100 mA). The
facility is operated 24 hours a day, 5 days a week, where
2000 hours/year were used for synchrotron radiation (SR)
studies and 1000 hours/year for maintenance work and accel-
erator physics research. To save electricity costs, accelerator
operation has been cut by 50% since 2023 [1–3].

The control system of the storage ring facility is based on
the open-source framework EPICS (Experimental Physics
and Industrial Control System [4]) and comprises a typical
three level client/server architecture. A field bus level, a real-
time control level, and the process control level. Over the
past 30 years, the systems have been continuously adapted
to the latest hardware and software developments.
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Figure 1: DELTA floor plan: The green area shows where
the upcoming UED project will be located. The red area
depicts the site of the currently installed 100-keV DC-UED
demonstration project. The SR beamline infrastructure is
shown in blue [1, 3].

HISTORICAL REVIEW
From 1999 to 2001, the control system underwent a step-

by-step transformation, changing from a non-standard, in-
house developed system to one based on the EPICS frame-
work [5]. At that time, it consisted mainly of a few HP-UX-
based workstations and about two dozen VMEbus single-
board computers (Force/MicroSys CPU types) running the
real-time operating system (OS) VxWorks [6]. They were
primarily connected to accelerator input/output (I/O) devices
via control area network (CAN) nodes (ESD digital/analog
I/O modules [7]) or a general purpose interface bus (GPIB).
Initially, all computers used a shared 10 Mbit/s ‘Thick Eth-
ernet’ network consisting of a 10 mm thick, rigid, yellow
coaxial cable (10Base5).

The HP-UX workstations were replaced successively by
standard Linux-based PCs running the EPICS client soft-
ware, along with a migration to VME-PowerPC CPUs op-
erating as EPICS servers. As a result, DELTA became one
of the first storage rings to operate a synchrotron radiation
facility based on Linux PCs in conjunction with the EPICS
framework.

Since October 2001, all ramped magnet power supplies of
the booster synchrotron (dipole, 6 quadrupoles, 2 sextupoles,
steerers), RF power, and all booster diagnostics (beam po-
sition measurement, tune control, beam loss measurement,
power supply currents, etc.) were handled by VME-based
digital signal processing (DSP) boards developed at DELTA
(‘DeltaDSP’). These DSP cards were designed with generic
EPICS driver/device support [8]. This setup has not been
modified and operates flawlessly up to now.



In the years that followed, the system was kept up to date
through a series of enhancements and new developments
(see Fig. 2).
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Figure 2: Major historical milestones.

Major Developments in the Past
Network Upgrades: In order to meet increasing band-

width and security requirements, DELTA’s computer net-
work has undergone a series of network technology upgrades.
From the original bus-type coaxial cabling (10Base5) to
the introduction of star-shaped ethernet over twisted pair
(10Base-T/100Base-TX) to today’s Gbit/s backbone fiber
optic technology (1000Base-SX/LX). In addition, the early
implementation of highly configurable firewalls [9] and the
introduction of network segmentation via virtual private
networks (VPNs) and virtual local area networks (VLANs)
significantly improved stability and performance while pro-
tecting against cyberattacks [10].

Virtualization: Adding more dedicated computers to
the client-server system over time increased administra-
tive overhead and created inefficient processor loads on the
servers. Server consolidation was achieved by introducing
virtualization techniques, beginning with Xen’s paravirtu-
alization [11] in 2009. This was later replaced by kernel-
based virtualisation (KVM) [12], enabling multiple physical
machines to be migrated to a single host. These changes
supported legacy systems, simplified backup execution, and
made it easier to create flexible testing environments [13].

Client Boot Concept: A centralized client boot concept
was implemented to solve maintenance problems caused
by the growing number of client PCs with different Linux
kernels and configurations. All new clients were equipped
with PXE-enabled network cards, which enabled them to
boot their individual operating systems from a central server.
This boot server provided customized but consistent Linux
kernels and root file systems. Client-specific settings (e. g.,
monitor configurations) and log files were stored on the
server, and common-use files were accessed via shared NFS
directories. This centralized management, which is still in
place today, leads to a more efficient distribution of processor
load and simplifies client management, thereby improving
consistency in the overall control system [13].

Database Redesign: To enable high-performance ac-
celerator fault analysis and for machine learning studies,
large amounts of data must be processed effectively. For
this purpose, DELTA’s SQL database (DB) was fundamen-
tally redesigned in 2017 [10]. All critical machine data is
continuously stored in EPICS records. A logger daemon

(Linux systemd service) collects the data and archives it
in the open-source object relational database management
system PostgreSQL [14]. The TimescaleDB plug-in [15,16]
facilitates the storage of time-series data. This PostgreSQL
extension increases analytical query performance while re-
ducing data size. The improvement of query processing in
large tables is achieved by utilizing PostgreSQL’s fundamen-
tal table partitioning functionality. DB data can be read via
the in-house command-line interface (CLI) ‘epicslog’, and
an associated Python library. Both options are based on
standard SQL commands [10].

Fieldbus Extension: The DELTA accelerator devices
are controlled in many places via ESD-CAN nodes [7].
These are connected to VME-CAN cards, which are driven
by VME-VxWorks/EPICS servers. This extensive VME
middle layer has been replaced in newer installations (e. g.,
RF water cooling control, wiggler SR outlet vacuum cham-
ber monitoring, magnet power supply interlock systems, etc.)
by dedicated, less complex TCP/IP-based networks using
a DIN rail-mountable, modular, compact, and expandable
WAGO I/O-System [17]. It offers a wide range of multi-
channel digital and analog input/output modules for various
signal types, as well as intelligent stepper motor controllers.
In addition, it is fieldbus-independent and supports numer-
ous communication protocols (e. g., Profibus, CANopen,
EtherCAT, Modbus) and industrial ethernet standards [10].

Accelerator Modeling: Early accelerator design stud-
ies were carried out through offline simulation programs
such as OPTICS [18], MAD [19] and ELEGANT [20]. Since
2001, Matlab [21] channel access libraries labCA [22] and
mca [23] have enabled direct read/write access to EPICS
PVs. This feature has been used extensively within the
Matlab-based accelerator simulation toolbox [24, 25] and
for prototype scripting [9]. In 2019, a Python/EPICS-based
model server was integrated into the DELTA control sys-
tem, enabling model calculations and storage ring simula-
tions involving live machine data [26]. The Python toolkit
‘Ocelot’ [27] was employed for accelerator physics computa-
tions. The implementation is based on a modular and flexible
client-server architecture according to the remote presenta-
tion model software design concept. This allows for parallel
studies of storage ring models with various configurations.
For example, online and offline simulations can be compared
in real-time. Additionally, magnet settings obtained from
simulation results can be transferred to the real machine, and
vice versa. EPICS PVs manage the data exchange and are
available transparently throughout the entire control system
for further processing.

RECENT DEVELOPMENTS
The DELTA EPICS-based control system underwent con-

tinuous maintenance, including hardware replacements, soft-
ware updates, network improvements, and the integration of
new device controls (e. g., for the new 7 T superconducting
wiggler [3] and the SPEED project [28]). A major upgrade



involved replacing outdated server infrastructure and imple-
menting a NixOS environment [29], a Linux distribution
built on the Nix package manager [30].

Renewal of the Server Infrastructure
The majority of deprecated servers (out-of-warranty and

maintenance) were replaced by two new 19-inch rack servers
equipped with EPYC 7443P CPUs (24C/48T), purchased
and installed in 2024. These servers also replace the legacy
storage area network (SAN) system [10] and are configured
as a redundant Proxmox cluster for high availability. The
Proxmox virtual environment (PVE [31]) is an open-source
virtualization platform based on the KVM hypervisor [12]
and Debian Linux [32], enables features like high avail-
ability clustering, web-based management, and support for
various storage backends. It integrates virtualization, con-
tainers, storage, and networking into one platform with a
user-friendly interface. The cluster hosts virtual machines
for general-purpose tasks and DELTA-specific software ser-
vices like ‘epicslog’ queries, DB management, monitoring
tools, and documentation platforms (see Fig. 3).
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Figure 3: Proxmox virtual environment (PVE) schematic
layout (left) and an example Proxmox UI showing typically
running VMs (right).

An additional computer serves as both a Proxmox backup
server (PBS [33]) and a third node in the cluster for failover
capabilities. It complements the PVE by offering incremen-
tal, deduplicated VM backups integrated directly with PVE.
Both systems utilize the ZFS file system [34], which com-
bines volume management with advanced data protection
features such as redundancy, snapshots, and replication to
safeguard against physical errors and data corruption. The
upgrade has significantly improved performance metrics
such as DB access times, enhanced reliability, reduced main-
tenance efforts, and eliminated downtime across DELTA’s
IT infrastructure.

Evaluation of NixOS
Despite the use of IT automation tools such as Ansi-

ble [35], DELTA’s Debian-based OS relies on manual, ad

hoc managed configurations, which are error-prone due to
the order of operations or unintended side effects during con-
figuration changes. Therefore, NixOS has been evaluated as
a replacement OS to simplify administrative efforts, improve
reliability, and increase reproducibility.

NixOS uses the Nix domain-specific language (DSL) [29]
to define complete system configurations, enabling repro-
ducible setups stored under version control. Its repository
includes over 100,000 pre-built binaries, reducing manual
software compilation while allowing custom configurations.
Dedicated modules were developed for EPICS packages and
DELTA-specific Python libraries to ensure seamless integra-
tion into workflows. Currently several virtual machines are
already running on NixOS (see Fig. 3), with plans to migrate
others from Debian-based distributions. The standalone Nix
package manager [30] also supports compatibility across
other Linux systems without compromising reliability.

Machine Learning Applications
The DELTA facility provides an excellent testing envi-

ronment for the development and proof of concept studies
of novel, innovative machine learning (ML)-based control
and optimization methods due to its high availability of
beam time for accelerator physics research. Potential use
cases span a wide range of applications [36]. Successful
implementations to date include feed forward neural network
(FFNN)-based orbit correction methods, which serve as an
alternative to singular value decomposition (SVD)-based
techniques (see Fig. 4) [37], as well as NN-based feedback
systems designed to control the betatron tune and chromatic-
ity values of the storage ring [38, 39]. Furthermore, the
electron transfer rate from the booster synchrotron to the
storage ring (injection efficiency) has been optimized auto-
matically using ML-based algorithms [40]. Additionally,
convolutional multilayer neural networks (CNNs) have been
applied in the analysis of CHG-based radiation spectra [41].

Figure 4: Sample plots during ML-based (FFNN-
57x57x30/26) orbit correction measurements for the hor-
izontal (top row) and vertical (bottom row) orbit plane.

NEW PROJECTS
A new facility dedicated to ultrafast electron diffraction

(UED) in the MeV range is currently under development and



aims to enable direct visualization of structural dynamics
at femtosecond resolution (see Fig. 1, green area). In the
final stage, this cutting-edge system will feature two 5-MeV
electron sources powered by advanced photocathode guns
designed specifically for high temporal and spatial precision
experiments across various fields such as material science
and molecular biology. Commissioning of the facility is
planned for 2027.

Parallel to the development work on the MeV-UED
project, a demo setup utilizing a 100 keV DC electron gun
has entered an operational testing phase (see Fig. 1, red area).
It was originally built at the University of Duisburg/Essen
(Germany) and was transferred to DELTA in 2024, where
it is currently being upgraded [42]. This prototype is used
for first electron diffraction experiments and serves as an
testbed for the planned MeV-UED setup.

The foundation of both UED projects’ control systems
relies on EPICS 7 (successor to EPICS 3), a robust toolkit
widely used within accelerator-based research infrastruc-
tures worldwide due to its scalability and modular design
capabilities [43].

DC-UED Demo Project
Operating System: Most of the DC-UED control soft-

ware runs in VMs, utilizing two PVE hypervisors and a
PBS installed on DELTA’s newly established standard server
hardware (see previous chapter: Renewal of the Server In-
frastructure). Other DC-UED VMs use NixOS to host a
variety of EPICS 7 IOCs (see Fig. 3 and previous chapter:
Evaluation of NixOS).

EPICS 7: The EPICS control system is used for the
DC-UED experiment to provide a user-friendly interface
and enable remote operation. EPICS 7, with its ‘pvAccess’
protocol [44], builds on DELTA’s established software while
introducing enhanced capabilities. The system consists of
several EPICS input/output controllers (IOCs) that utilize
community libraries (e. g., asyn, streamdevice, areaDetector,
Modbus, etc.) for device control, such as handling cameras,
temperature sensors, power supplies, and stepper motors.

The novel ‘pvAccess’ protocol is primarily used for com-
munication due to its improved support for features like
long strings and NDArray-based images. High-level au-
tomation is achieved through Python scripts using the ‘p4p’
library [45] for tasks like image analysis and more sophis-
ticated machine control. All required EPICS libraries and
dependencies are managed via the Nix package manager [30],
ensuring stable and reproducible development environments
supported by the ‘deltapkgs’ git repository.

Device Control: As a diffraction experiment, the main
data comes from the Andor iXon detector camera [46]. It is
managed via the areaDetector library [47], which provides
plugins for image processing and exports images using the
‘pvAccess’ protocol in a standard format (normative type
NTNDArray). A Python-based ‘pvAccess’ server is under
development for real-time image analysis, with results seam-
lessly integrated into the EPICS control system.

The Wago I/O-System 750 [17] handles basic I/O con-
trol, utilizing Modbus modules for digital and analog I/O,
temperature channels, and stepper motor controllers that
manage settings for mirrors, sample holders, wave plates,
and delay stages. Historical EPICS values are archived using
the ‘epicslog’ software toolkit with TimescaleDB [15,16]
for time-series data storage and SQL-based querying (see
previous chapter: Database Redesign).

USB devices like phase shifters and attenuators are con-
trolled through a NixOS-based IOC server using custom
asyn drivers.

User Interface: The DC-UED experiment’s main user
interface (UI) operates on a network-booted NixOS system,
that ensures immutability and reproducibility while provid-
ing persistent storage for settings (e. g. monitor setup) and
detector images. It provides all necessary programs and li-
braries to run control UI panels and operator written Python
scripts. The system is defined entirely in text files within a
git repository, enabling version control and easy revocation
if needed. Its immutability ensures local changes don’t af-
fect configuration, while persistent storage is provided via
network-mounted directories for settings, global data, and
detector image storage.

Control panels use the ‘deltadm’ display manager, which
was developed at DELTA and rewritten in C++ with
pvxs [48] for EPICS-7 integration. The panels are built
using the Qt framework [49] and the Qwt widget library,
as well as the Qt Designer WYSIWYG-editor for ease of
creation by operators (see Fig. 5). Features include basic
widgets, subpanels, macros for templates, plugins for panel
providers, and specialized widgets like image tools. Future
plans include specialized widgets and deeper integration of
‘epicslog’ for data visualization.

Figure 5: GUI of the control panel for the DC-UED demo
experiment (courtesy of UED work group).

IT Concept for the planned MeV-UED Project
The data acquisition system (DAQ) for the proposed UED

beamline is planned to be built around the JUNGFRAU 1M
detector module, which will operate at a repetition rate of 1



kHz [50]. The detector is expected to generate 1-megapixel
images with a bit depth of 16 bits, resulting in an image
size of 2 MiB. At this repetition rate, it will produce a data
rate of 2000 MiB/s, posing significant challenges for both
IT infrastructure and fast live data analysis.

To address these demands, state-of-the-art computing
hardware and software are planned to be employed. The
system will integrate field-programmable gate array (FPGA)
boards, advanced NVMe storage drives, and machine learn-
ing methods. A dedicated detector server is intended to
be equipped with an HPC-FPGA compute card, a graphics
processing unit (GPU), and high-speed NVMe SSD storage.
The FPGA card will utilize PSI-developed JUNFRAUJOCH
firmware [50] to ingest the data stream from the detector
module and pre-process it for the server CPU. Additionally,
it will perform real-time spot-finding on portions of image
data to provide immediate feedback to operators.

Efficient data compression and reduction are also antic-
ipated as critical tasks to minimize storage requirements.
Therefore, the server CPU will collect images from the
FPGA card and store them in a standardized compressed
format, widely regarded as the ‘gold standard’ for macro-
molecular crystallography diffraction data, on local SSDs.
Portions of this data may also be sent to GPUs for further
live analysis using advanced techniques such as machine
learning.

For comprehensive offline analysis, all measurements are
planned to be archived for at least six months. Even after
applying compression algorithms, this high-volume dataset
is expected to require several petabytes of usable storage
capacity. To achieve this within limited server rack space
constraints, modern high-capacity servers equipped with at
least 60 drives each are required.

Managing distributed datasets across multiple servers
while ensuring redundancy against hardware failures will
present additional challenges. To address these effectively
while maintaining full control over stored information,
DELTA plans to employ scalable clustered storage systems
based on the open-source ‘Ceph’ software platform [51].
This solution is designed to enable seamless scalability for
future requirements.

As with previous projects like DC-UED, the control sys-
tem responsible for monitoring sensors and controlling de-
vices is planned to be hosted on KVM-based VMs and in
Linux containers [52]. Resource management will be han-
dled by the Proxmox open-source virtualization platform,
which is expected to ensure superior compartmentalization
while facilitating software maintenance workflows. Further-
more, this setup aims to provide an efficient backup and
restore mechanism essential for operational reliability.

Finally, enterprise-grade network switches offering band-
widths up to 25 Gbit/s per port will enable seamless com-
munication between servers. This planned infrastructure is
expected to support live analysis capabilities for measure-
ment data while enabling rapid real-time feedback control.
Additionally, the high-bandwidth network will facilitate ef-
ficient data transfer between storage systems and computa-

tional nodes, ensuring scalability and reliability for future
requirements of the UED beamline project (see Fig. 6).

Figure 6: Planned data acquisition system for the proposed
MeV-UED project.
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