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Abstract. Since the DELTA accelerator facility does not use a White circuit-driven fast
topping-up mode, each software-driven injection ramp cycle takes about 7 seconds. Depending
on the injection efficiency, 150 to 200 ramp cycles are required to reach the maximum beam
current of 130 mA in the storage ring. Thus, for fast post-injection, a high electron transfer rate
is crucial. During the injection process, a large number of parameters (e. g., magnet settings,
timings of pulsed elements) have to be adjusted manually. The injection efficiency depends
mainly on the settings of the booster extraction elements, the T2 transfer line magnets, and
the storage ring injection components. In order to automate the injection procedure and to
improve the electron transfer efficiency, the application of innovative machine learning concepts
was studied.

1. Introduction
The DELTA facility does not apply a classical resonating White circuit to operate the booster
synchrotron (BoDo). Instead, the booster magnets and radio frequency (RF) system are ramped
software-driven. Each energy ramp cycle from 70 MeV to 1.5 GeV requires approx. 7 seconds. In
order to minimize the injection time, it is essential to keep the electron transfer rate (injection
efficiency) from BoDo to the storage ring high. Already in 2005, first attempts were made
to optimize the injection efficiency by a combination of genetic algorithms (GAs) and neural
networks (NNs) [1, 2]. This idea was taken up again, but now with an expanded number of
injection parameters and a significantly enlarged data pool for machine learning (ML) based
supervised training.

The injection efficiency Einj = ∆QDELTA/QBoDo is defined by the ratio of charge change
∆QDELTA in the storage ring to the charge transfer from the booster QBoDo. The charge is
Q = I · T , where the beam currents I and the revolution time T are known. The beam current
in BoDo is determined before extraction into the T2 transfer line (see Fig. 1) and the DELTA
beam is measured approx. 0.5 seconds before and after the extraction trigger, respectively.
Taking into account the revolution times of 168 ns in BoDo and 384 ns in DELTA, this gives the
charge increase in the storage ring. Thus, the transfer efficiency Einj is given by:

Einj =
∆QDELTA

QBoDo
=

∆IDELTA

IBoDo
· 384

168
.

The measurement error amounts to a few percent depending mainly on the percentage of
transferred charge and the lifetime of the stored beam [3]. The efficiency fluctuations (see Fig. 2)
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are primarily caused by jitter effects of the trigger timings for the pulsed injection components.

Figure 1. Schematic view of the magnet setup of the second transfer line T2, which connects
the booster synchrotron BoDo (left) and the storage ring DELTA (right) ( [1], modified). The
main elements are bending- (B), quadrupole- (Q), and horizontal/vertical corrector (HK/VK)
magnets.

Figure 2. Example of a standard injection sequence at DELTA. Here, 167 booster injection
ramp cycles were needed to fill the storage ring from 0 mA up to 111 mA. The averaged injection
efficiency is 73.9 %± 4.1 %. The average booster current amounts to 2.14 mA± 0.74 mA.

2. Machine learning workflow
In this work, the measurement for ML-data acquisition (DAQ), model training, and deployment
at the accelerator were carried out separately. The detailed workflow is shown in Fig. 3. To
collect ML-training data, two different methods of measurements were implemented. On the one
hand, each injection parameter was systematically scanned individually (see Fig. 4) whereby all
other parameters remained unchanged. These data result in a sensitivity matrix for the injection
efficiency. On the other hand, all parameters were randomly (Gaussian) varied at once (see
Fig. 5). In this way, several thousand data sets were recorded. Subsequently, the data pool was
cleaned (e. g., outliers removed), normalized and rescaled to difference values. For this purpose,
the corresponding change in efficiency was calculated for each parameter variation. With these
revised data records, surrogate injection models were trained by the use of different supervised
machine learning algorithms [4]. Finally, the trained models serve optimizing algorithms like
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Figure 3. Concept of the EPICS/Python-based ML-workflow (steps 1 to 6). First, the ML-
training data were collected from the accelerator facility (1). After data preparation (2), these
data were used for offline model training (3) of surrogate injection models (4). Finally, the
trained models, in turn, were loaded into the EPICS-based control system (5) and tested for
injection optimization (6).

Figure 4. Step scanning of four T2 transfer line elements (exemplarily). The injection efficiency
change was measured during sweeping the set values of the BoDo extraction septum (top left),
the first (top right) and second (bottom left) pulsed dipole, and the first quadrupole (bottom
right).
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simulated annealing [5] and Bayesian optimization [6] as a predictive and computational basis
for improving injection performance in real machine operation.

Figure 5. Example of Gaussian random variation of the BoDo extraction septum strength.
At the same time, all other injection parameters were Gaussian-like changed in the same way.
The resulting effect on the measured injection efficiency is depicted in the scatter plot and
summarized in the histogram on the left.

3. Optimization results
As part of a diploma thesis [7], initially 13 parameters of the transfer line T2 were randomly
as well as systematically varied and the corresponding impact on the injection efficiency was
measured. These records served as input for supervised training of two types of surrogate
injection models based on neural networks (NNs [8,9]) and Extremely Randomized Trees (Extra
Trees [10]), a special case of Decision Trees (DTs [11]), respectively. A simulated annealing-
based algorithm [5] utilizes the surrogate models to optimize injection parameters during the
injection phase between each ramp cycle within 7 seconds. The hyper-parameters of both
model types were optimized applying Bayesian optimization [5, 6]. This results in NNs with
five fully connected ReLU (Rectifier Linear Unit) layers containing 13/30/25/34/1 neurons [7].
The NNs were trained using an ADAM back-propagation method [12], a stochastic gradient-
based optimization. The Extra Trees were composed of an ensemble of 104 DTs with a maximum
depth to grow of 26 [7]. First case studies showed that injection models based on trained NNs
generally perform better than models based on Extra Trees. Four benchmark comparisons are
exemplarily presented in Fig. 6. Starting with misadjusted injection parameter setups, the NN-
based methods were able to achieve the model-predicted higher efficiencies after few iteration
steps, whereby the Extra-Tree-driven optimization failed to improve the injection efficiency.
These preliminary studies were continued in the scope of a subsequent master’s thesis [13].
In this work, the injection parameter space was extended to 18 dimensions and the database
for ML-based training was enlarged by supplementary DAQ-measurements. In addition to the
T2 magnet strength settings, the injection elements of the storage ring (e. g., kicker magnets,
magnets of a static injection bump) as well as trigger timings of the pulsed T2 and kicker magnets
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were now taken into account, too. To train the surrogate injection models, in addition to NNs [9],
also Gaussian Process Regressors (GPR [14, 15]) techniques were explored. Furthermore, a

Figure 6. Four examples of injection efficiency optimization runs using neural networks (top:
1st and 2nd run) and Extra Trees (bottom: 3rd and 4th run) as surrogate models. The red
lines indicate the prediction of the relating ML-trained model for each optimization step which
corresponds to one injection ramp cycle.

Figure 7. Variation of injection parameter set values during injection optimization scans (see
Fig. 8) for one example from each of four subgroups of injection parameters. Step 1 provides a
misadjusted starting point, and each subgroup is then optimized in a series of 10 steps.
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Bayesian optimization using Gaussian processes (GP [13–16]) were performed for the injection
optimization scans (see Fig. 8). Since GPs get by with less training data and are more efficient
for lower–dimensional problems, the parameter space has been divided into subgroups of similar
parameter types (e. g., quadrupole-, corrector- and kicker magnets, timings). Figure 7 depicts
an example with four subgroups out of 18 available components. Figure 8 shows exemplarily
the associated comparison of injection optimization scans applying the GPR- and NN-trained
surrogate models, respectively. Both methods were able to find enhanced injection parameter
sets to improve the efficiency significantly, generally with GPRs performing slightly better under
this higher dimensional condition.

Figure 8. Injection efficiency optimization scans using Bayesian optimization and applying a
Gaussian Process Regressor (GPR) as a surrogate injection model (blue) in comparison to an
NN-trained model (red). The best parameter set of each scan is saved and can subsequently be
applied to the machine. In this example, the GPR-based scan finds the best injection efficiency
of 72% in step 32 compared to the maximum of 61% in step 40 by use of an NN-based model.
Both runs started with a misadjusted efficiency setup of approx. 12%.

4. Summary and outlook
On a proof-of-principle level, it was demonstrated that ML methods are appropriate tools to
optimize the injection process at the DELTA accelerator facility in an automated manner. In
particular, trained NNs and GPRs were well-suited as predictive injection models in contrast to
DTs techniques. In addition, it turns out that Bayesian optimization and simulated annealing
algorithms using these surrogate models achieve similar improvements for injection performance
in real machine operation. The results can be further improved by additional parameter
optimizations of the ML algorithms and by systematic extension of the training data (e. g.,
T2-BPM data, T2-dipole temperatures). Furthermore, alternative optimization methods like
MIDACO (Mixed Integer Distributed Ant Colony Optimization [17]), which are based on an
evolutionary algorithm known as Ant Colony Optimization (ACO), will be tested. Finally, for
better software maintenance, it is planned to implement the more universal ML-workflow steps
(dark grey boxes in Fig. 3) into dedicated software containers [18,19].
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