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Abstract
Since the DELTA accelerator facility does not use aWhite

circuit-driven fast topping-up mode, each software-driven in-
jection ramp cycle takes about 7 seconds. Depending on the
injection efficiency, 150 to 200 ramp cycles are required to
reach the maximum beam current of 130mA in the storage
ring. Thus, for fast post-injection, a high electron transfer
rate is crucial. During the injection process, a large number
of parameters (e. g., magnet settings, timings of pulsed ele-
ments) have to be adjustedmanually. The injection efficiency
depends mainly on the settings of the booster extraction el-
ements, the T2 transfer line magnets, and the storage ring
injection components. In order to automate the injection
procedure and to improve the electron transfer efficiency,
the application of innovative machine learning concepts was
studied.

INTRODUCTION
The DELTA facility does not apply a classical resonating

White circuit to operate the booster synchrotron (BoDo). In-
stead, the booster magnets and radio frequency (RF) system
are ramped software-driven. Each energy ramp cycle from
70MeV to 1.5GeV requires approx. 7 seconds. In order to
minimize the injection time, it is essential to keep the elec-
tron transfer rate (injection efficiency) from BoDo to the
storage ring high. Already in 2005, first attempts were made
to optimize the injection efficiency by a combination of ge-
netic algorithms (GAs) and neural networks (NNs) [1, 2].
This idea was taken up again, but nowwith an expanded num-
ber of injection parameters and a significantly enlarged data
pool for machine learning (ML) based supervised training.
The injection efficiency Einj = ∆QDELTA/QBoDo is de-

fined by the ratio of charge change ∆QDELTA in the storage
ring to the charge transfer from the booster QBoDo. The
charge is Q = I · T , where the beam currents I and the rev-
olution time T are known. The beam current in BoDo is
determined before extraction into the T2 transfer line (see
Fig. 1) and the DELTA beam is measured approx. 0.5 sec-
onds before and after the extraction trigger, respectively.
Taking into account the revolution times of 168 ns in BoDo
and 384 ns in DELTA, this gives the charge increase in the
storage ring. Thus, the transfer efficiency Einj is given by:

Einj =
∆QDELTA

QBoDo
=
∆IDELTA

IBoDo
·

384
168
.

The measurement error amounts to a few percent depend-
ing mainly on the percentage of transferred charge and the
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Figure 1: Schematic view of the magnet setup of the second
transfer line T2, which connects the booster synchrotron
BoDo (left) and the storage ring DELTA (right) ( [1], modi-
fied). The main elements are bending- (B), quadrupole- (Q),
and horizontal/vertical corrector (HK/VK) magnets.

Figure 2: Example of a standard injection sequence at
DELTA. Here, 167 booster injection ramp cycles were
needed to fill the storage ring from 0mA up to 111mA.
The averaged injection efficiency is 73.9%± 4.1%. The
average booster current amounts to 2.14mA± 0.74mA.

lifetime of the stored beam [3]. The efficiency fluctuations
(see Fig. 2) are primarily caused by jitter effects of the trigger
timings for the pulsed injection components.

MACHINE LEARNING WORKFLOW
In this work, the measurement for ML-data acquisition

(DAQ), model training, and deployment at the accelerator
were carried out separately. The detailed workflow is shown
in Fig. 3. To collect ML-training data, two different meth-
ods of measurements were implemented. On the one hand,
each injection parameter was systematically scanned indi-
vidually (see Fig. 4) whereby all other parameters remained
unchanged. These data result in a sensitivity matrix for the
injection efficiency. On the other hand, all parameters were
randomly (Gaussian) varied at once (see Fig. 5). In this way,
several thousand data sets were recorded. Subsequently, the
data pool was cleaned (e. g., outliers removed), normalized
and rescaled to difference values. For this purpose, the cor-
responding change in efficiency was calculated for each pa-



Figure 3: Concept of the EPICS/Python-basedML-workflow
(steps 1 to 6). First, theML-training data were collected from
the accelerator facility (1). After data preparation (2), these
data were used for offline model training (3) of surrogate
injection models (4). Finally, the trained models, in turn,
were loaded into the EPICS-based control system (5) and
tested for injection optimization (6).

rameter variation. With these revised data records, surrogate
injection models were trained by the use of different super-
vised machine learning algorithms [4]. Finally, the trained
models serve optimizing algorithms like simulated anneal-
ing [5] and Bayesian optimization [6] as a predictive and
computational basis for improving injection performance in
real machine operation.

Figure 4: Step scanning of four T2 transfer line elements
(exemplarily). The injection efficiency change was measured
during sweeping the set values of the BoDo extraction sep-
tum (top left), the first (top right) and second (bottom left)
pulsed dipole, and the first quadrupole (bottom right).

OPTIMIZATION RESULTS
As part of a diploma thesis [7], initially 13 parameters of

the transfer line T2 were randomly as well as systematically

Figure 5: Example of Gaussian random variation of the
BoDo extraction septum strength. At the same time, all
other injection parameters were Gaussian-like changed in
the same way. The resulting effect on the measured injection
efficiency is depicted in the scatter plot and summarized in
the histogram on the left.

varied and the corresponding impact on the injection effi-
ciency was measured. These records served as input for su-
pervised training of two types of surrogate injection models
based on neural networks (NNs [8, 9]) and Extremely Ran-
domized Trees (Extra Trees [10]), a special case of Decision
Trees (DTs [11]), respectively. A simulated annealing-based
algorithm [5] utilizes the surrogate models to optimize in-
jection parameters during the injection phase between each
ramp cycle within 7 seconds. The hyper-parameters of both
model types were optimized applying Bayesian optimiza-
tion [5, 6]. This results in NNs with five fully connected
ReLU (Rectifier Linear Unit) layers containing 13/30/25/34/1
neurons [7]. The NNs were trained using an ADAM back-
propagation method [12], a stochastic gradient-based opti-
mization. The Extra Trees were composed of an ensemble
of 104 DTs with a maximum depth to grow of 26 [7]. First
case studies showed that injection models based on trained
NNs generally perform better than models based on Ex-
tra Trees. Four benchmark comparisons are exemplarily
presented in Fig. 6. Starting with misadjusted injection pa-
rameter setups, the NN-based methods were able to achieve
the model-predicted higher efficiencies after few iteration
steps, whereby the Extra-Tree-driven optimization failed to
improve the injection efficiency.

These preliminary studies were continued in the scope of
a subsequent master’s thesis [13]. In this work, the injec-
tion parameter space was extended to 18 dimensions and
the database for ML-based training was enlarged by supple-
mentary DAQ-measurements. In addition to the T2 magnet
strength settings, the injection elements of the storage ring
(e. g., kicker magnets, magnets of a static injection bump) as
well as trigger timings of the pulsed T2 and kicker magnets
were now taken into account, too. To train the surrogate in-
jectionmodels, in addition to NNs [9], also Gaussian Process



Figure 6: Four examples of injection efficiency optimization
runs using neural networks (top: 1st and 2nd run) and Extra
Trees (bottom: 3rd and 4th run) as surrogate models. The
red lines indicate the prediction of the relating ML-trained
model for each optimization step which corresponds to one
injection ramp cycle.

Regressors (GPR [14, 15]) techniques were explored. Fur-
thermore, a Bayesian optimization using Gaussian processes
(GP [13–16]) were performed for the injection optimiza-
tion scans (see Fig. 8). Since GPs get by with less training
data and are more efficient for lower–dimensional problems,
the parameter space has been divided into subgroups of
similar parameter types (e. g., quadrupole-, corrector- and
kicker magnets, timings). Figure 7 depicts an example with
four subgroups out of 18 available components. Figure 8
shows exemplarily the associated comparison of injection
optimization scans applying the GPR- and NN-trained sur-
rogate models, respectively. Both methods were able to find
enhanced injection parameter sets to improve the efficiency
significantly, generally with GPRs performing slightly better
under this higher dimensional condition.

SUMMARY AND OUTLOOK
On a proof-of-principle level, it was demonstrated that

ML methods are appropriate tools to optimize the injection
process at the DELTA accelerator facility in an automated
manner. In particular, trained NNs and GPRs were well-
suited as predictive injection models in contrast to DTs tech-
niques. In addition, it turns out that Bayesian optimization
and simulated annealing algorithms using these surrogate
models achieve similar improvements for injection perfor-
mance in real machine operation. The results can be further
improved by additional parameter optimizations of the ML
algorithms and by systematic extension of the training data
(e. g., T2-BPM data, T2-dipole temperatures). Furthermore,
alternative optimization methods like MIDACO (Mixed In-
teger Distributed Ant Colony Optimization [17]), which are
based on an evolutionary algorithm known as Ant Colony
Optimization (ACO), will be tested. Finally, for better soft-

Figure 7: Variation of injection parameter set values during
injection optimization scans (see Fig. 8) for one example
from each of four subgroups of injection parameters. Step 1
provides a misadjusted starting point, and each subgroup is
then optimized in a series of 10 steps.

Figure 8: Injection efficiency optimization scans using
Bayesian optimization and applying a Gaussian Process Re-
gressor (GPR) as a surrogate injection model (blue) in com-
parison to an NN-trained model (red). The best parameter
set of each scan is saved and can subsequently be applied
to the machine. In this example, the GPR-based scan finds
the best injection efficiency of 72% in step 32 compared
to the maximum of 61% in step 40 by use of an NN-based
model. Both runs started with a misadjusted efficiency setup
of approx. 12%.

ware maintenance, it is planned to implement the more uni-
versal ML-workflow steps (dark grey boxes in Fig. 3) into
dedicated software containers [18, 19].
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