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Abstract

Machine learning (ML) driven algorithms are finding
more andmore use cases in the domain of accelerator physics.
Apart from correlation analysis in large data volumes, low
and high level controls, like beam orbit correction, also non-
linear feedback systems are possible application fields. This
also includes monitoring the storage ring betatron tunes, as
an important task for stable machine operation. For this
purpose classical, shallow (non-deep), feed-forward neural
networks (NNs) were investigated for automated adjusting
the storage ring tunes. The NNs were trained with experi-
mental machine data as well as with simulated data based
on a lattice model of the DELTA storage ring. With both
data sources comparable tune correction accuracies were
achieved, both, in real machine operation and for the sim-
ulated storage ring model. In contrast to conventional pro-
portional–integral–derivative (PID) controller methods, the
trained NNs were able to approach the desired target tunes
in fewer steps. The report summarizes the current status of
this machine learning project and points out possible future
improvements as well as other possible applications.

INTRODUCTION

DELTA is a 1.5–GeV electron storage ring facility oper-
ated by the TU Dortmund University supplying radiation
ranging from THz to the hard x-ray regime [1,2]. Since 2018,
machine learning (ML) methods were extensively studied
for beam orbit control. For more details see [4]. Due to
thermal orbit movements and magnetic current-dependent
field changes, the tunes may vary during machine operation.
Therefore, automatic tunes correction is equally important,
especially for the DELTA storage ring, as otherwise sudden
beam losses can occur.
To provide a precise, reliable and fast tune reading, the

complete measurement setup was renewed in 2006 [3]. It
is based on broadband beam excitation with an x,y-kicker
magnet and measurement of the relaxation betatron oscil-
lations turn-by-turn. The betatron frequency detection uti-
lized a classical numeric approach applying the Levenberg-
Marquardt algorithm for data fitting. Thus, a tune measuring
accuracy of better than 2 · 10−5 can be achieved [3].

A simple PID-tune feedback loop based on this measure-
ment compensates for tune shifts. This method is regularly
in use since many years as the standard tune control method
at the DELTA storage ring.
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MACHINE LEARNING APPROACH
Simulation results
An alternative approach is the application of machine

learning methods. For this purpose, simulations were ini-
tially carried out to figure out if there exists a ML-trainable
correlation between quadrupole strength variations and cor-
responding tune shifts. A lattice model of the DELTA stor-
age ring served as the basis for Twiss parameter (optics)
computations within the Accelerator Toolbox (AT) frame-
work [7, 8]. The lattice contains all main accelerator com-
ponents including all insertion devices (IDs) such as the
superconducting asymmetrical wiggler magnet (SAW) [5].
Furthermore, non-linear magnetic saturation and cross-talk
effects of the combined function magnets were taken into
account [6]. Based on this detailed ring model, the AT soft-
ware library calculates all parameters of the x,y-coupled
linear optics and thus also the simulated tunes (Qx , Qy).
The simulated data correspond to the measured values of
the real machine in the range of a few percent [5].

Figure 1: Initial quadrupole strength settings for the standard
DELTA storage ring optics with 7 independent power supply
circuits, 3 horizontal (QF01-03, top) and 4 vertical (QD01-
04, button) focusing families located in the ring arcs (settings
for AT optics simulations, SAW switched off).

The linear optics of the DELTA storage ring can be flex-
ibly adjusted with a total of 30 independent quadrupole
families distributed over a circumference of 115m. It is
mainly composed of a sequence of so-called triplet unit cells
arranged in the arcs of the racetrack-shaped storage ring [14].
The Twiss functions in the straight sections can be set by
matching sections at the respective ends of each arc. In this
region, the SAW generates a large impact on the vertical
betafunction due to vertical edge focusing effects [15]. In
order not to change the optics in the straight sections, only
7 quadrupole families in the arcs are used for tune control.



Due to relatively small betafunctions at these quadrupole
positions, significant tune shifts can be generated by moder-
ate quadrupole strength variations. Inside the arcs a total of
3 horizontally and 4 vertically focusing quadrupole families
are available. They can be operated independently by dedi-
cated power supplies (PS). The initial quadrupole settings
for the standard optics (SAW off) are shown in Fig. 1.

Figure 2: Distribution of 3000 random quadrupole strength
variations (±1%). Settings for 3 horizontal (QF01-03) and
4 vertical (QD01-04) focusing independent magnet families.
On each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The outliers are plotted individu-
ally using the ’+’ symbol. See also Fig. 16 in appendix.

For simulations, the strengths of these quadrupole families
were randomized, uniformly distributed within various max-
imum interval limits (±0.1%, ±0.5%, ±1%, ±2%), whereby
these limits have also been uniformly randomized. This
leads to Gaussian-like distributions without outliers beyond
the interval limits1. Fig. 2 depicts an example for 3000 ran-
dom quadrupole set variations within a maximum interval
limit of ±1%. For each set of limits 3000 related tunes were
computed via the AT-framework. Fig. 3 presents the cor-
responding results for 3000 tune calculations in two cases,
SAW switched on and off, respectively (random limits ±1%).

With these overall 12000 data pairs (NN input: tune shifts
and NN output: quadrupole strength changes) classical 3-
layer feed-forward neural networks were trained (see Fig. 4).
The neural network consists of 2 input neurons (∆Qx, ∆Qy),
between 7 and 14 neurons in one hidden layer (optimal quan-
tity determined by trial and error) and 7 output neurons
(quadrupole strength variations ∆K). The non-linear hyper-
bolic tangent serves as the transfer function between the
input and hidden layer and a linear transfer function was
applied between the hidden and output layer. The NNs were
trained on a trial basis with a variety of trainingmethods [11].
Best results were achieved with a conjugate gradient back-
propagationwith Polak-Ribiére updates [12]. Corresponding
learning curves are shown in Fig. 5 as an example. The learn-

1 This avoids beam losses in the later application on the real machine
operation.

Figure 3: Distribution of 3000 tunes for quadrupole settings
randomly varied by ±1%. Optics simulations with SAW
switched on and off. The tune is vertically shifted due to
edge focusing effects of the SAW.

ing performance is defined by the mean squared normalized
error performance function (mse) of the NN output2.

mse =
1
P

P∑
p=1

1
N

N∑
n=1

(opn − tpn)2

It summed up the square difference between all target (t) and
NN output (o) neurons (N) for all training patterns (P). With
increasing number of full batchsize (80% of all data pairs
P) backpropagation iterations (also referred to as epochs),
the mean squared error of the network was reduced by more
than one order of magnitude and reaches a minimum of 3.9 ·
10−5 [1/m4] after 166 epochs. The validation learning curve
(green line) demonstrates that the neural networks can be
trained by simulated data and thus there exists an ’expected’
trainable correlation between tune shifts and quadrupole
strength variations. The regression coefficient3 is calculated
to R = 0.65.

Figure 4: Three-layered neural network topology to be
trained for the automated tune control.

Subsequently, the NNs were verified with the accelerator
model. Figure 6 shows the tune matching for an arbitrary
2 Mean squared error is defined as the average squared difference between
NN outputs and targets. Lower values are better. Zero means no error.

3 The regression R value measures the correlation between NN outputs
and targets. An R value of 1 means a close relationship, 0 a random
relationship. For details see [11, 13].



Figure 5: Training performance of different data sets deter-
mined by the mean squared error (mse) of the conjugate gra-
dient backpropagation learning algorithm. The training was
performed with a full batch size of 12000 simulated data (see
Fig. 2, 3). Best validation performance is 3.9 · 10−5 [1/m4]
after 166 iterations (green curve).

Figure 6: Example for verification of NNs trained by simu-
lated data and applied to the simulation model. The desired
goal tune was reached in iterative steps from different start
values, SAW switched on and off, respectively.

goal tune as an example. The initial tunes were defined by
the SAW status (switched on/off). In both cases the desired
tune has been reached iteratively. The number of steps is
adjustable. Small tune shifts (< 0.01) can be performed
in a few steps. The resolution of the step width depends
primarily on the quantity of training data for the respective
value range.

Application in real machine operation
On basis of the simulations described above, correspond-

ing experimental data were recorded during real storage
ring operation. Again, only the current set values of the
quadrupole families in the arcs were randomly changed and
subsequently the associated tunes were measured with an ac-
curacy of better than 1·10−4 [3] (see Fig. 7, Fig. 8 and Fig. 9).
To minimize the probability of beam losses due to e.g. large
tune jumps, the variation interval of the quadrupole settings
was initially limited to ±0.5% for each power supply family.
During a short machine run of about 2 hours, more than 600
data pairs were recorded (see Fig. 9). Therefore, in aver-

age approximately 12 seconds was required for each tune
measurement cycle.

Figure 7: Initial quadrupole settings for 7 independent
quadrupole families in the storage ring arcs. Circuits of
equal strength K are combined into quadrupole families.

Figure 8: Random quadrupole strength variations ∆K. Set-
tings for 3 horizontal (QFs) and 4 vertical (QDs) focusing
independent magnet families (one example from 600 mea-
surements).

Figure 9: Distribution of 600 measured tunes generated by
random quadrupole strength variations of ±0.5% with SAW
switched off (see Fig. 8).

The neural networks described above (see Fig. 4) could
also be used to successfully train with these measured ex-
perimental data (see Fig. 10). Because the measured data



are more noisy4 than data from simulations, the regression
coefficient is reduced to R = 0.45.

Figure 10: Training performance for different data sets de-
termined by the mean squared error (mse). NN learning
was performed by the gradient descent with momentum and
adaptive learning rate backpropagation algorithm [9, 10].
NN trained by experimental data (see Fig. 7, 8, 9). A valida-
tion performance of 2.8 · 10−3 [A2] was reached after 996
iterations. No significant performance improvement was
achieved after approx. 200 iterations. Training has been
terminated after 1000 epochs (green curve).

Neural network validations
Although the regression correlation is smaller in compar-

ison to simulation calculations, these trained NNs were still
tested to determine quadrupole changes for given tune shifts
(i.e., differences to the so-called goal tunes) in real machine
operation. Figures 11 and 12 demonstrate two successful ex-
amples for storage ring tune controls, SAW switched off and
on, respectively. In general, NNs were able to calculate the
correct quadrupole settings to reach the desired target tunes
in just a few steps. But since the chopper power supplies
of the DELTA quadrupole magnets cannot be controlled
without delays in real time, the new quadrupole set values
must be approached in several smaller current steps. After
each single step (new quadrupole settings) the tune can be
determined again (see numbered actual tunes in diagrams 11
and 12) and the NNs calculate the next step until the desired
goal tune is reached iteratively. In the shown examples the
goal tunes were reached in 10 respectively 50 steps with an
absolute error of less than 4 ·10−3. The step size is adjustable
within narrow bounds. It depends on the desired total tune
shift and the quadrupole variation limits during training. Re-
setting from the goal tune to the initial start tunes was also
possible analogously.
Ideally, the trained NNs need only one single calcula-

tion to match the tune in one large step. However, a non-
synchronous approach to the calculated power supply (PS)
current values can lead to (partial) beam losses. For this
reason, the software synchronous approach described above

4 Mainly dominated by the limited read/set accuracy of approx. 0.025% for
the quadrupole chopper power supplies.

Figure 11: Usage of NNs trained with experimental data and
applied to real machine operation. This initial experiment
demonstrates a tune fitting in 10 steps from start to goal tune
without beam losses (SAW switched off).

Figure 12: Application of NNs trained with experimen-
tal data and applied to real machine operation with SAW
switched on. This second example demonstrates a tune
matching in 50 smaller steps from start to goal tune without
beam losses.

was implemented. Nevertheless, this method is not always
successful either, since, as with the standard PID method,
beam destroying resonances can be crossed, as indicated by
the resonance lines in the Qx,y-tune diagrams.
Finally, it was examined whether it is also possible to

perform tunes control of the real storage ring with NNs
only trained by simulated model data; and vice versa NNs
only trained with real machine data and then applied to the
simulation model. This should be possible as long as the
relationship between quadrupole variation and tune change
in the linear storage ring model is similar to that of the real
machine5. Here, the correct transformation of model sim-
ulation parameters into real magnet power supply current
settings and vice versa is an important task. The correspond-
ing recalculations were performed by aMatlab version of the
conversion program "i2k" [5, 6, 11]. The program also takes
non-linear saturation and crosstalk effects of the combined
function magnets into account [6].

5 Alternatively, if required, additional quadrupole correction currents could
be adjusted by an empirically determined scaling factor.



Fig. 13 illustrates a typical tune matching application as
an example. It is comparable to the validation shown in
Fig. 12, which has been obtained with real machine data
exclusively. This example demonstrates, for the first time
at the DELTA storage ring, that NNs trained by simulated
model data can also be used for controlling real machine
processes.
In an analogous manner, it was also possible to use NNs

trained by measured data to perform tune control on the
simulated storage ring model (see Fig. 14). This result cor-
responds to the verification example shown in Fig. 6. As
previously indicated the step sizes can be adjusted within
certain limits essentially only given by the value range of
training data.
So far, only difference data (∆Qx,y and ∆KQF,QD) with

small changes (approx. 1%) were used for NN training. As
long as the correlation of these relative changes (gradients)
are similar for a wide range of optics settings (i.e., absolute
tunes), this machine learning technique is applicable in a
wide tune workspace of the DELTA storage ring, without
having to retrain. At least, this is the case in the domains of
stable solutions for the pure triplet unit cell, which can be
seen from the stability diagram of the triplet necktie island
(see Fig. 15, [14]). For more details see also [16]. However,
this must further be validated by future studies.

Figure 13: Example for validation of NNs trained by simu-
lation data and applied in real machine operation with SAW
switched on. In 50 iterative steps from start to desired goal
tune.

SUMMARY AND OUTLOOK
Machine learning based techniques are increasingly re-

placing classical, e.g. PID-based, feedback loops in the con-
trol system domains of particle accelerators. At the electron
storage ring DELTA, it could be shown that trained neural
networks can also be used for automated tunes adjustment.
The network training was carried out with data recorded
during real machine operation as well as with simulation
data, based on an accelerator model. With both data sources,
comparable tune correction accuracies were achieved in real
machine operation. In contrast to the iterative PID methods,
NNs are able to approach desired target tunes in single calcu-

Figure 14: Example for verification of NNs trained by real
machine data. In iterative steps from start to desired goal
tune. NNs were applied to the simulation model with SAW
switched on and off, respectively (compare to Fig. 6).

Figure 15: Necktie stability diagram for the DELTA triplet
unit cell (see insert). The coloured area indicates the hor-
izontal phase advance per unit cell in dependence of the
triplet quadrupole strengths (QF, QD). White regions depict
sections without periodic solutions for the transfer matrix M
(trace M<2). The rectangular zone marks approximately the
workspace of standard machine operation (AT simulation).

lation steps, which could enable a more controlled scanning
in the tune diagram. But, as long as the DELTA quadrupole
power supplies lack the feature to drive synchronously, an
iterative procedure for the NN-based tune control loop must
necessarily be applied.

In principle, the ML-method presented in this article can
also be transferred to other accelerator optimizations. For
example, by varying the sextupole strengths and measuring
corresponding chromaticity changes. NN trained by such
data can be applied to match desired chromaticities. A simi-
lar method could also be applied to the adjustment of beam
coupling and the associated beam size [17]. Therefore, one
would have to vary the strengths of skew quadrupoles and
determine the related coupling change.
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APPENDIX
Machine learning validations by use of correla-
tion analysis

The following plots show NNs inputs and the correspond-
ing NNs outputs after training for all quadrupole families in
a matrix plot representation6. The histograms along the di-

6 It creates a matrix of subaxes containing scatter plots. The basic data
matrix (X) consists of random quadrupole strength changes (rows of X)
for each quadrupole circuit (columns of X). Along the diagonal scatter
plots are replaced with histogram plots of each column of X.

agonals display the counts of strength variations (∆KQF,QD
or ∆IQF,QD) for each quadrupole family inside given bin
edges (x,y-axis for each subplot). Line-like distributions in
the scatter plots (outside the diagonals) indicate a stronger
correlation between quadrupoles than blurry, cloud-like dis-
tributions. Thus, e.g., NNs recognize (learn) that QFs and
QDs are more correlated in each case. This could be an
indication that the same tune shift could be achieved with
an alternative combination of quadrupole settings than orig-
inally trained. The correlation analysis is still in the early
stages and needs to be developed by further investigations.



Figure 16: Distributions of 12000 random quadrupole settings as an input for NN training. Visual proof that the random
settings works well (input for simulations, see Fig. 2).

Figure 17: Outputs (quadrupole strengths distributions) of trained NN calculated for 12000 simulated tunes (compare with
Fig. 16). Some QFs and QDs seems to be correlated among each other (QD01-04 and QF02-03).



Figure 18: Distributions of 600 random real quadrupole settings as an input for NN training. Visual proof that the random
settings works well. Related power supply circuits must be strongly correlated. This corresponds to lines in the scatter
subplots (top left to bottom right: QF1, 2xQF2, 4xQF3, QD1, QD2, QD3, 4xQD4). Input for real machine settings.

Figure 19: Trained NN outputs (quadrupole strengths distributions for individual power supply circuits) calculated for 600
measured tunes.



Figure 20: Distribution of 600 random real quadrupole settings as an input for NN training. Associated power supply
circuits were combined into quadrupole families (compare with Fig. 18). Visual proof that the random settings works well
(input for NN training with real machine data).

Figure 21: Trained NN outputs calculated for 600 measured tunes. Quadrupole strengths distributions for combined power
supply circuits (see Fig. 20).


